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Abstract 
his paper presents modelling and control of highly nonlinear dynamics parallel manipulator system 
using neural network-based gain tuning technique in a model-based feedback linearization 
controller. Adaptive gain tuning approach is implemented for conventional computed torque control 

scheme. The proposed controller has very simple structure and takes little computational time while 
tracking a trajectory. A feed forward model is implemented to achieve the gains corresponding to the errors 
and their derivatives. The results are illustrated for a circular trajectory. Simulation results for a 3-RRR 
planar parallel manipulator show that the intelligent gain tuning technique has better performance than 
conventional computed torque control in terms of controllability and stability. An experimental analysis is 
presented for straight line trajectory. 

 
Keywords: Computed torque control, Lyapunov stability, Online gain tuning,  Planar parallel 
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1. Introduction 
Parallel manipulators are dynamically coupled, time-varying and highly nonlinear systems that are 

extensively used in high speed, high accuracy operations for various industrial tasks (Jun et al., 2011 & 
Patel and George, 2012). With these requirements, the accurate position control of the manipulator end-
effector is a challenging task and also it is difficult to make use of parallel manipulators in real time tasks 
(Zubizarreta et al., 2013 & Xue et al., 2013). Model based controllers designed with known dynamics of 
parallel manipulators and it is a difficult task to design with an acceptable performance index (e.g., 
minimum error, better tracking capability and external disturbance rejection). Most popular approaches 
of model based controller are the augmented PD (APD) (Wei and Shuang, 2014) and computed-torque 
control (CTC) (Amin et al., 2012 & Li and Wu 2004), which are appropriate for trajectory tracking control 
with external disturbance rejection and system uncertainties. Many researchers combined robust classical 
techniques (e.g. Computed torque control) with non-classical methods (e.g. fuzzy and neural networks 
(NN)). Some other works proposed different online self-gain tuning approaches using hybrid techniques 
with function approximation capabilities using some advanced robust control techniques to achieve good 
tracking performance and stability of the system (Amin and Musa, 2012 & Tien et al., 2013). Zuoshi et al., 
2005 developed a combined computed torque and fuzzy control. Likewise a nonlinear PD control was 
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proposed by (Francisco et al., 2014), where the gains are auto tuned using fuzzy controller. Lyapunov 
theorem is used for stability analysis to get guaranteed asymptotic convergence to zero for both tracking 
error and error rate. (Muller and Hufnagel, 2012) proposed a CTC and augmented PD technique in 
redundant coordinates as an alternative to coordinate switching method. Many recent works also 
employed sliding mode control approach (Farzin and Nasri, 2012 & Wen and Chien, 2014) due to its 
robustness in the adjustment of instabilities. Adaptive, Hybrid PID and PD SMCs were proposed for robotic 
manipulators (Acob et al., 2013 & Ouyang et al., 2014) to estimate error uncertainties, here the 
decentralized PID controller acts as a feedback system to enhance the stability of the close-loop 
mechanism.  

Artificial Neural Networks are progressively identified as a successful tools for controlling nonlinear 
dynamic systems because of their advantages such as the ability to approximate arbitrary linear or 
nonlinear mapping through learning, less formal statistical training and ability to identify complex 
nonlinear relationships between dependent and independent variables and strong interaction between 
predicted variables. In this regard, self gain tuning techniques has been proposed to enhance the 
execution of such controllers. (Tien et al., 2013) proposed an online self gain tuning method using neural 
networks with nonlinear PD-CTC that achieves good tracking performance in 5-bar parallel manipulator. 

But in this approach, they did not consider the external disturbances or un-modelled dynamics. An 
indirect disturbance observer was implemented by (Vinoth et al., 2014) to compensate the external 
disturbances prior to the controller design. Very few works applied the gain tuning approaches to higher 
degree of freedom parallel manipulators, due to its complex nonlinear dynamics. Present work proposes 
a neural network based auto-tuned PD-CTC for the 3-RRR planar manipulator. Here, the nonlinear PD-CTC 
is achieved by combining a conventional CTC and an intelligent gain tuning method using a two layer 
neural network in presence of model uncertainties and external disturbances. The advantages of the 
proposed controller over the conventional controllers have been illustrated. 

 
2. Dynamics of Planar Parallel Manipulator 

As shown in figure 1, a three degree of freedom 3-RRR planar parallel mechanism has three active and 
six passive joints connecting a mobile platform with fixed base using three limbs. The fixed frame XOY is 
attached to the base frame and moving frame X'PY' is considered on the mobile platform. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Kinematic Structure of 3-RRR Planar Parallel Manipulator 

Two translations xp, yp and one rotation ϕ about Z axis constitute the end-effector (platform center P) 
coordinates. The active and passive joint vectors are respectively denoted by [ ]T321 ,, θθθ=aq , 

[ ]T321 ,, βββ=pq  and li1 and li2 are the active and distal link lengths. The mass of the links mi1 and mi2 are 
concentrated at the centroid of each link about the axis normal to the XOY-reference plane. Also, their 
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moments of inertia are considered as  Izi1 and Izi2, mp is the mass of the mobile platform located at the 
centroid of the equilateral triangle P, and  Ip is the moment of inertia about an axis equally oriented. 

The dynamic model of open-loop system of the 3-RRR mechanism can be expressed as: 

                                                               tqNqqqCqqM τ=++ )(),()(                                                    (1) 

where 19T),,( ×ℜ∈Χ= ppa qqq  is the joint vector, ),,( φppmp yxX =  is the end-effector vector 
19T),,( ×ℜ∈= ppat Fτττ  is the torque vector T

1 ),,( 32 aaaa ττττ = is the input joint torque vector of active 

joints, TT
321 )0,0,0(),,( == pppp ττττ is the input torque vector of passive joints and 

T),,( mpyxmp ffF τ= is the applied wrench vector of the end-effector. 99  ),(  and  )( ×ℜ∈qqCqM  are the 

inertial and coriolis matrices respectively, which are given in the matrix form below and 19   )( ×ℜ∈qN is 
the vector of actuated torque. The above dynamic model can be simplified by considering external 
disturbances at the active joints. The loop closure constraints are considered using a Jacobian matrix. 
From D’Alembert’s principle and the principle of virtual work, the configuration space can be smoothly 
parameterized by the actuator joint vector qa.  

                                                                                ta W ττ T=                                                                           (2) 

where                                














∂
∂=

a

p

q
q
I

W                                                                              (3) 

W is the Jacobian matrix. By using the matrix W from the equation (3) the dynamic model of equation 
(1) can be transformed into the closed-loop kinematic structure as: 

aqNqqqCqqMW τ=++ )(),()(T                                             (4) 

Thus, they are expressed in terms of active joint coordinates. The complete dynamics of the closed-
loop mechanism can be written as: 

aaaaaaa qNqqqCqqM τ=++ )(),()(








                                        (5)                                        

where      NWNCWWWMWCMWWM TTTT ,, =+==





 

Accordingly the active joint torques can be computed. The dynamic model of equation (5) should have 
the following properties: 

Property 1: M


is positive definite and symmetric. 

Property 2: CM


2−  is a skew‐symmetric. 

The exact dynamic model of the parallel manipulator will be never known due to nonlinear 
uncertainties in the system. If the modelling errors caused by these uncertainties are bounded, the actual 
dynamics can be expressed by combining the modelling errors and estimated dynamics in the following 
equation: 

                                                               aaaaaaaaa qNqqqCqqM τ=++ )(),()(








                                      (6) 
Where aaaa CCCMMM


∆+=∆+=   and  are the actual dynamic parameters of the parallel manipulators; 

and aa CM


∆∆   and  are the bounded modelling errors. 

The vector of unknown external disturbances and uncertainties at the active joints can be expressed 
as follows: 

)()(),()( tDqNqqqCqqM aaaaaaaaa ++∆+∆=∆








τ                           (7) 
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where 13)( ×ℜ∈tD is the vector of the external disturbances. 

From equations (6) and (7), the actual dynamic equation of the planar parallel manipulator in the active 
joint space as: 

                                                                  aaaaaaa qqqCqqM ττ =∆++ 





),()(                                   (8) 

The dynamic model of equation (8) of the manipulator in the active joint space, which is similar as 
serial manipulator. But, the presences of uncertainties aτ∆  are enormous and highly nonlinear because 
of closed-loop constraints and the variation of the parameters. 

 
3. Design of Controllers 

Dynamic equation (6) of the manipulator is highly nonlinear due to the dynamic coupling between the 
kinematic links. In order to achieve a good performance of parallel manipulators in trajectory tracking 
problems different control techniques from nonlinear control theory are required. 

  

3.1. Computed Torque Control 

In computed torque control, the nonlinear dynamic equations of motion are reduced to linear form 
in terms of dynamic errors. Utilizing the computed torque control approach with a proportional-
derivative (PD) outer control loop, the applied actuator torques are calculated at each time step using 
the following computed torque law as given in (Zuoshi et al., 2005). 

                                               ac qqqCeKeKqqM aavpda 





),())(( +++=τ                                    (9) 

where aτ  is the computed torque applied to input links, Kp and Kv are the diagonal matrices of the 
proportional and derivative gains, and e  and e  are the array of the position and velocity errors of 
the input links, ad qqe −= and ad qqe  −= . Figure 2 shows the complete CTC approach. 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic diagram of the general CTC scheme 

3.2. Design of Hybrid Sliding Mode Control  

The first step in the design of the SMC is the design of sliding surface function of the system (9) as:  

                                                                  dada qqeqqees  −=−−=+= )( λλ                                           (10) 
where ],,[ 321  λλλλ diag=  with 3) 2, 1,( =iiλ are the positive constants, which determines the 

motion feature in the sliding surface; and using dynamics written in terms of the new parameter of 
sliding surface as follows: 

                                        )),()((),()( ψτ ssatKeKeKqMqqqCqqM svpaaaadac ++++= 








                     (11) 
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where ],,[ 321 ssss KKKdiagK =  is positive definite and represents the SMC gain. Also the saturation 
(Ouyang et al., 2014): 

                                                                     
    if/
    if)(

),(






≤
>

=
ψψ
ψ

ψ
ss
sssign

ssat                                                     (12) 

In the above equation ψ is a diagonal matrix that determines the boundary layer of the sliding 
surfaces and sign () is the Signum function.  

This control law replaces the model-dependent part of the SMC law with the linear feedback of the 
computed torque control law and retains the switching term of the SMC law. Because this control law 
only contains feedback control, it is more robust and less sensitive to changes in the dynamics of the 
system than pure SMC. With this, a model-free law is obtained with nonlinear feedback control for 
rigid robotic manipulators. 

 

3.3. Design of Intelligent Gain Tuning Technique 

The conventional control techniques which mentioned in literature achieve rarely the required 
performance in trajectory tracking with the presence of modeling errors and external disturbances 
with constant gain matrices Kp and Kv. In order to improve the performance of conventional control 
schemes, different nonlinear control techniques are employed. In the present paper, the nonlinear PD-
CTC is considered, which has the similar structure of CTC. The control law for the proposed scheme as 
follows: 

                 aaaaaaavpdac qqqCqqMqqqCeKeKqqM 








),()(),())(( +′′=+++=τ                   (13) 
 

where eKeKq vpdq  ++=′′ ; and Kp and Kv are time-varying gain matrices.
],,[ 321 pppp KKKdiagK = ; ].,,[  321 vvvv KKKdiagK =  For tuning the gain matrices Kp and Kv in 

nonlinear CTC controller equation (13), an intelligent tuning system proposed by Tien et al., 2013 is 
applied. Here, the output of the NN is the input to the nonlinear PD-CTC: 

                                                               1,2,3.     ,)( ==′′ ixfq ii                                                                    (14) 
 

in which xi is the input of sigmoid function,  f (xi)  is defined in the following equation: 

                                                          1,2,3.     
)1(
)1()(

Ζ

Ζ
=

+
−

×Ψ=
−

−
i

e
exf i                                                        (15) 

where gYxgY i2Ζ/2 , ==Ψ , Yg represents the sigmoid function’s shape. Here the sigmoid function is 
the dependent of parameter Yg (Tu and Kyoung, 2006). Figure 3 shows the block diagram of NN model 
which is used in the intelligent gain tuning. In this, the NN has a single neuron, which is used to update 
the gains. Here, the input of the sigmoid function is considered as the output of the NN, which can be 
formulated as follows: 

                                                           1,2,3.  , =++= i  (t)eK(t)eK(t)q(t)x iviipidi                                (16) 
 
 

 

 

Figure 3: Intelligent Gain Tuning using Neural Network 
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The gains Kpi and Kvi in equation (16) are automatically updated by NN in order to minimize the error 
which is defined as: 

                                                                            
2

i )(
2
1

aidi qqE −=                                                                    (17)   

The following equations are updated gains:                   

)()()1( tKtKtK pipipi ∆+=+                                                        (18) 

                                         )()()1( tKtKtK vivivi ∆+=+                                                         (19) 

In which the change of gains )(tK pi∆  and )(tKvi∆  can be computed by the steepest descent method (Tien 
et al., 2013):                                                                                                        

22
2

)1(
4)(,

)1(
4)(

Ζ−

Ζ−

Ζ−

Ζ−

+
=∆

+
=∆

e
eeetK

e
eetK iivviippi µµ                              (20) 

The online self gain tuning technique should satisfy the conditions which were presented in (Tu and 
Kyoung, 2006). The proof of the exponential stability of the parallel manipulator system controlled by the 
proposed controller (13) with intelligent gain tuning technique (19), (20) is described below. 

 

3.4. Stability Analysis 

To show that the computed torque control technique linearizes the controlled system, the torques 
computed by (9) are substituted into in (5), yielding 

                                                                  ))(()( eKeKqqMqqM vpdaaa 





++=                                         (21) 
Premultiplying each term of the equation (21) by 1−M


, and substituting the relationship, qqe d  −=

.Provides the following linear relationship for the error: 

                                                                                0=++ eeKeK vp                                                            (22) 
The above relation can be used for selecting the gains to get the desired nature of the closed-loop 

error response. Since the error equation (22) is linear, it is easy to select Kp and Kv so that the overall 
system is stable and e → 0 exponentially as t→∞. Generally, if let Kv = kvI, Kp = kpI with s2+kvs+kp 
Hurwitz polynomial, then the control law (13) implemented to the system (21) results in exponential 
trajectory tracking. The system is parameterized by the end-effector coordinates in the control law 
(21). 

 

4. Simulations 
In order to demonstrate the effectiveness and robustness of the proposed control law, simulation 

results are presented in this section. To demonstrate robustness, several different cases are considered 
and the tracking performances of CTC, Hybrid SMC and proposed intelligent gain tuning technique are 
compared. The properties used for the manipulator are listed in Table 1.  

 
Table 1: Geometric parameters of the 3-RRR planar manipulator 

S.No. Parameter Length (m) Mass (kg) Inertia (kg-m2) 
1 Active link (li1) 0.2500 0.4680 2.4380×10-3 
2 Passive link (li2) 0.1667 0.3120 0.7220×10-3 
3 Mobile platform(mp) 0.1250 0.2340 1.8281×10-3 
4 Base platform 0.5000 - - 
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A circular trajectory in XY plane is tracked using different controller schemes. The desired trajectory 
is defined as follows: 

Circular Trajectory: { } )sin(),cos( tryytrxx pdpd ×+=×−=                                                (23) 
 

where r=0.01m is the radius, TT ,0)(0.21,0.21),,( =φpp yx is the center of the circle and 6.3] [0,t∈ . 
The orientation of the mobile platform is maintained constant throughout the trajectory (ϕ=0°). In 
simulations, the control gains for CTC: Kp=1000, Kv=63.25, Hybrid SMC: λ=10, Ks=diag(100,50,25), 
ψ=diag(0.08,0.06,0.02) are selected. The proposed controller parameters are set as the tuning speed 
parameters µp=50000, µv=100, sigmoid function’s shape identifier, i.e., Yg=0.01, initial control gains for 
without external disturbance: Kp=800; Kv= 50, and with external disturbance: Kp=500; Kv= 50 are 
considered. 

 
4.1. Tracking Control without External Disturbances 

First of all, the proposed intelligent gain tuning technique is applied for the tracking control for a 
prescribed trajectory, and the comparisons with conventional CTC and Hybrid SMC are presented in figure 
4.  

 
 

 
 
 
 
 
 
 
 
 
 

Figure 4: Trajectory tracking of the end-effector without external disturbances 
 

Figure 5 shows the tracking errors at the active joints of the mechanism and it is found that in all the 
joints on average the percentage error is less than one for the proposed control scheme. Figure 6 
shows the corresponding updating gains. Figure 7 shows the required control torques for the 
manipulator to follow the trajectory with CTC and Hybrid SMC schemes. 

  
Figure 5: Tracking Errors at the Actuated joints 
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Figure 6: Intelligent tuning method gains 

 
Figure 7: Control Torques at the Actuated joints 

 
4.2. Tracking Control with External Disturbances 

In this simulation the external disturbances at the actuated joints are introduced randomly as a time-
domain Gaussian noise signals )1.,.( ≤∆ aei τ . All other parameters remain same as in the normal 
tracking conditions. The results of the simulation for all three controllers are shown in figure 8. Here, 
the proposed intelligent gain tuning technique has better computational time than conventional CTC 
and Hybrid SMC controllers. This shows that the proposed controller has a fast response time on X86-
based PC with 4 GB RAM and 3.10GHz dual core Intel processor and demonstrates its effectiveness in 
compensating for external disturbances. The tracking errors of the three actuated joints are shown in 
figure 9. From these figures, it is clear that the error of each actuated joint (in radian) is rapidly 
converging to zero and the proposed controller convergence rate is more compared with conventional 
CTC and Hybrid SMC.  
 

 
Figure 8: Trajectory tracking of the end-effector with external disturbances 
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Figure 9: Tracking Errors at the Actuated joints 

 
Figure 10 shows the updated gain history. In Figure 11 the required torques for each actuated joint 

by the three controllers, i.e. conventional CTC, Hybrid SMC and intelligent gain tuning are illustrated 
and compared in the presence of external disturbances. From these, it can be concluded that the 
torques applied to each actuator by the conventional CTC and Hybrid SMC to reject disturbances are 
initially higher in magnitude than in the intelligent gain tuning technique, and may cause saturation in 
the actuators. Therefore, it is obvious that intelligent gain tuning technique performance is same as 
conventional control schemes under the same conditions, without increasing the maximum torques of 
the actuated joints. 

 

 
Figure 10: Intelligent tuning method gains 

 

 
Figure 11: Control Torques at the Actuated joints 

 
4.3. Experimental Results 

The experimental results for without disturbance is carried out for a scaled prototype having three 
servos as shown in figure 12. A straight-line trajectory between points P1(17.5,10.10) cm and P2 
(21.5,10.10) cm has been considered for the simulation. The prototype is connected to the Arduino 
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UNO board and the desired joint angles are supplied to the prototype through Arduino program at a 
constant speed of 10 rpm for each servo. The results of the simulations are presented in figure 13 and 
the corresponding joint angles and the desired joint angles are shown in figure 14. Obviously, this 
controller in open-loop mode has a very rough trajectory in the Cartesian space. By using updated joint 
angles and their velocities, a computed torque will be supplied in every step of the trajectory. The work 
is under progress. 

 

                                    
Figure 12: Scaled Prototype                                 Figure 13: Simulation results 

      
Figure 14: Experimental and theoretical actuated joint angles 

 
Conclusions 

This paper presented trajectory tracking performance improvements of planar parallel manipulators 
with an intelligent gain-tuning approach based on a single layer neural network model. Based on CTC as a 
nominal controller, an intelligent gain tuning technique using neural network was proposed. Simulation 
results for a 3-RRR planar parallel manipulator show the effectiveness of the proposed controller for a 
given trajectory. It has been shown that the proposed controller with online gain tuning using neural 
network brings about the smallest tracking error and quicker convergence rate compared with 
conventional CTC and hybrid SMC controllers. The stability of the proposed controller was verified with 
Lyapunov stability theorem to guarantee the tracking performance of the manipulator. The main 
advantages of the proposed controller in comparison with the existing conventional CTC and Hybrid SMC 
methods are: (1) It can compensate the huge amount nonlinear uncertainties and external disturbances 
as seen from error histories (2) The proposed controller does not require the upper limits of uncertainties 
and approximation errors. Future work could include implementation of proposed gain tuning for control 
of scaled model and design of disturbance rejection observer to the model operating in highly disturbed 
environments. 
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